9月24日 花伟杰:Computational spectroscopy–as applied in photophysics, photochemistry, and material science(68周年校庆系列学术报告)

来源:pt真人平台 时间:2019-09-16浏览:81设置


讲座题目:Computational spectroscopy–as applied in photophysics, photochemistry, and material science

主讲人:花伟杰  教授

主持人:Prof. Konstantin E. Dorfman

开始来源:pt真人平台 时间:2019-09-24 10:00:00

讲座地址:闵行校区光学大楼A214会议室

主办单位:精密光谱科学与技术国家重点实验室

  

报告人简介:

       花伟杰,南京理工大学应用物理系“青年拔尖人才选聘计划”教授,博导。南京大学化学本科(2000-2004),南京大学(2004-2010)和瑞典皇家工学院(2007-2011)联合培养理论化学博士。随后在瑞典皇家工学院(2011-20132015-2016)和美国加州大学尔湾分校(2013-2015)从事博士后研究。博士后期间获瑞典Lars Hierta 纪念基金会基金(2012),并作为共同负责人获瑞典科学基金会基金(2016-2019)。2016年底回国至今,任南京理工大学教授。2017年获批两项国家自然科学基金,入选江苏省双创计划双创博士。主要研究方向为X射线光谱计算方法发展与应用,通过结合量子化学、凝聚态物理、分子动力学、非线性光学研究分子、生物及纳米材料中的结构、光谱和动力学。近年来,主要研究分子超快非线性X射线光谱和二维材料的传统X射线光谱。在Chemical ScienceAngewandte Chemie International EditionCarbonStructural   DynamicsApplied   Physics LettersThe Journal of Chemical Theory and ComputationPhysical   Review B等杂志发表学术论文40余篇,其中综述4篇。作为主要作者及参与开发4个光谱计算软件包。

报告内容:

Spectroscopy uses light-matter interaction to   probe the structures of molecules and materials. Spectral simulation at the   quantum mechanical level can help make reliable interpretations of   experimental features, which guarantees correct further analysis to extract   the underlying physical insights. In this talk, I will present our recent   computational spectroscopy studies in the optical and X-ray regime, in order   to elucidate the photophysical/photochemical mechanisms and the   structure-spectroscopy relation. With QM/MM approach and time-dependent   density functional theory, we simulated UV absorption, and   vibrationally-resolved fluorescence and phosphorescence spectra for   donor-acceptor molecular co-crystals to help investigate the details of   thermally-activated delayed fluorescence (TADF) photophysics. At the   multiconfigurational quantum chemistry level, transient X-ray absorption   spectroscopy (TXAS) of the isolated uracil molecule was simulated to help   identify the photo-decay mechanisms from the ππ* state (S2) and spectral   fingerprints of the nπ* dark state (S1). With density functional theory,   X-ray photoelectron and absorption spectroscopy of 2D materials (N-doped   graphdyine and g-C3N4) was simulated to determine the local structures and   make correct spectroscopic interpretations. Good agreement with experiment   was achieved in all cases, and we discuss to employ appropriate computational   methods for different problems so as to best bridge experiment and theory.

  


返回原图
/